Researchers have developed nanoparticles that can fight some of the most dangerous antibiotic-resistant bacteria. The work offers a way to fight infections at their source.
The research could be an important step towards managing the threat of antimicrobial resistance.
[Superbugs] are increasingly one of the biggest threats to global health, food, and development.
The World Health Organization says antibiotic-resistant bacteria—bacteria that have developed a resistance to drugs, commonly referred to as “superbugs”—are increasingly one of the biggest threats to global health, food, and development.
And while bacteria have acquired this resistance on their own, it’s being fast-tracked through the over-prescription and misuse of antibiotics, as well as by poor hygiene practices.
Reports suggest there are approximately 700,000 deaths around the world each year resulting from antibiotic-resistant infections. It’s been predicted that figure will rise to 10 million per year by 2050.
Focusing on preventable infections
Andrea O’Connor, a chemical engineer by background and deputy head of the University of Melbourne’s School of Chemical and Biomedical Engineering, works in the field of biomaterials, implants, and tissue engineering (the practice of merging scaffolds—tiny, porous devices that act as a template to regenerate tissue and organs—with cells to repair wounds and damaged tissues).
Much of O’Connor’s research has focused on tissue engineering, and the scaffolds or sponges that are implanted to encourage new tissue growth.
“Eventually, that material that we implanted would degrade away,” she says. “But if that takes months or even up to a year, there’s a risk of infection forming on that device.”
These infections can pose significant health problems, and can also occur when medical implants such as heart valves and hip implants are inserted.
“Clinicians tell us infection leads to significant numbers of failures of medical devices and implants,” O’Connor adds. “Increasingly, through our involvement in the field, we’ve realized it’s a major challenge.”
So O’Connor and her team began researching antimicrobial materials—materials that impede the ability of microorganisms, such as bacteria, to grow. Having backgrounds in nanotechnology, the researchers worked on developing nanoparticles that would be effective against a wide range of infections.
Battling superbugs with nanoparticles
The researchers found that selenium (a mineral that humans require in their diets to boost immunity and aid metabolism) in the form of nanoparticles can stop the growth of bacteria such as ‘Golden Staph’ (Staphylococcus aureus).
“The benefit of the nanoparticles that we’ve developed is they attack bacteria in multiple ways…”
They think the nanoparticles do this by disrupting the membrane around the bacteria.
“One of the things that bacteria need to stay functioning is their cell membrane,” she explains. “If it starts to get holes in it or to leak, then the bacteria don’t function well and if it gets bad enough then they will die.
“One of the ways that these nanoparticles can attack bacteria is by disrupting that membrane so they make the bacteria leaky, and then things can pass in and out of the bacteria in a way they normally wouldn’t,” O’Connor says.
The team has done tests where they’ve incorporated the nanoparticles as a coating on the surface of a medical implant, or as part of a tissue-engineering scaffold. The antimicrobial components are then gradually released into their surrounding environment, and prevent infections forming.
Bacteria mix can boost or bust antibiotic resistance
Presently, silver nanoparticles are often used to prevent infections, via silver-impregnated wound dressings and products. But a disadvantage of silver is its toxicity, which means its use needs to be limited. In contrast, selenium is far safer for the human body.
What else can these nanoparticles do?
O’Connor says the selenium nanoparticles have potential for a variety of medical uses, and could help fill the gap as the efficacy of antibiotics declines.
“One of the major areas that we’re interested in is that of chronic wounds. That’s a particular concern for patients with diabetes, and increases also with the prevalence of drug-resistant bacteria,” she says.
“It has potential for other applications as well. We’re interested in potential applications in the food industry, so we’re also developing materials to help limit food spoilage and the risk of food-borne infections.”
So far, the selenium-based nanoparticles have been tested against nine different types of bacteria, and have been effective against all of them.
The team plans to file a patent within the next few months, but right now they’re wrapping up some final experiments to further understand how the nanoparticles operate.
Swabbing dolphin mouths reveals bacterial ‘dark matter’
Overall, the future looks bright for the role their discovery could play in the fight against superbugs; in fact, it might end up correcting the course that’s been unfolding since Fleming first found a way to fight bacteria.
“The benefit of the nanoparticles that we’ve developed is they attack bacteria in multiple ways,” says O’Connor. “It’s going to be difficult for the bacteria to develop resistance to all those different forms of attack.”
The researchers report their findings in the Journal of Colloid and Interface Science.
Source: Erin Munro for University of Melbourne