The use of computer models may break down barriers to making lab-grown meat more economical on a larger scale, according to a new review.
Experts predict that producing meat in a lab using tissue engineering techniques, or lab-cultured meat, will one day be more sustainable than, nutritionally equivalent to, and less ethically concerning than typical meat production.
“To this day cultured meat alternatives remain prohibitively expensive.”
Producing meat economically in a lab, however, remains a problem.
Now, the new review suggest that using computers to analyze the metabolic needs of livestock animal growing cells—or genome-scale metabolic modeling—could help food scientists design processes and growth media that produce meat at scales suitable for commercialization.
“To this day cultured meat alternatives remain prohibitively expensive,” says Costas D. Maranas, professor of the chemical engineering department at Penn State and an Institute for Computational and Data Sciences associate.
“By far the biggest expense is the cost for the components that make up the cell growth medium. Metabolic modeling can help find ways to come up with nutrient combinations that would be less expensive and more in tune with the metabolic needs of the growing cells.”
Metabolic modeling uses computers to determine how genes produce proteins in an organism, such as cattle and chickens, says Patrick Suthers, postdoctoral scholar in chemical engineering. The goal, then, would be to take that information to precisely guide the production of cultured meat that is both high quality and as cost-effective as possible.
“Ideally, you want to use the most inexpensive way to feed growing cells to get the results that you want,” says Suthers. “But, it’s really about efficiency, so it might not necessarily be the fastest growth media. For example, you could have a slower growing media, but it might be substantially less expensive to produce.”
To make meat using this process, researchers take cells from animals and then multiply these cells many times over. Currently, this process is restricted to small-scale operations in labs, which makes it too expensive for most people. By producing larger volumes of meat, however, lab-cultured meat may become a more desirable alternative to current meat production.
“Chemical engineering and metabolic modeling have not been used in this area before,” says Suthers. “What we’re really trying to do here is look at some of the steps that researchers have done for other processes and conceive of a process that fits this system.”
Why the shift to lab-grown meat?
The researchers suggest that reliance on current meat production is causing growing environmental and health problems.
According to the researchers, raising livestock is responsible for approximately 18% of greenhouse gas emissions. Livestock directly or indirectly accounts for 70% of all agricultural land, amounting to 30% of Earth’s land surface and over 8% of global human water use.
“The amount of meat that is being consumed is increasing and if you look at the amount of resources required to meet that demand, including the land and the crops required to feed the animals, it has a big impact on the environment,” says Suthers.
“In industrial agriculture, there’s also an increased chance that diseases, such as viruses and bacteria, are going to spread within the herds. Cattle also produce methane, so there are some climate impacts, as well.”
Because raising livestock also raises animal welfare concerns, lab-cultivated meat may be an appealing option for people who are opposed to meat-eating for religious or ethical reasons, he adds.
It’s kind of like brewing beer
While the notion of making meat in a laboratory may be hard to picture for most people, comparing it to a brewery may be a better way to visualize the process, says Suthers.
“It may sound unusual, but, in many ways, this could be similar to a brewery,” says Suthers. “In a brewery, you’ll find large steel tanks, vats, and other pieces of equipment, which people don’t necessarily equate with something that’s lab-based. But the same things that people are doing in a brewery to make people’s beer or alcohol, you could do in a lab.”
Suthers says more work needs to be done to make lab-cultured meat a reality, but he adds that introducing computer models is a critical step in that direction.
“We’re still in the early stages of putting the pieces together,” says Suthers. “But, we think that computer modeling could make a big impact on this.”
The review appears in the Journal of American Institute of Chemical Engineers.
Source: Penn State