Globular clusters could be up to 4 billion years younger than previously thought, according to new research.
Comprised of hundreds of thousands of stars densely packed into a tight ball, globular clusters had been thought to be almost as old as the Universe itself—but thanks to new research models researchers showed that they could be as young as 9 billion years old rather than 13 billion.
The discovery brings into question current theories on how galaxies, including the Milky Way, formed—with between 150-180 clusters thought to exist in the Milky Way alone.
“Determining ages for stars has always depended on comparing observations to the models which encapsulate our understanding of how stars form and evolve,” says Elizabeth Stanway, of the University of Warwick’s astronomy and astrophysics group and lead author of the paper, which appears in Monthly Notices of the Royal Astronomical Society.
“That understanding has changed over time, and we have been increasingly aware of the effects of stellar multiplicity—the interactions between stars and their binary and tertiary companions.”
Designed to reconsider the evolution of stars, the new Binary Population and Spectral Synthesis (BPASS) models take the details of binary star evolution within the globular cluster into account. Researchers can use the models to explore the colors of light from old binary star populations—as well as the traces of chemical elements seen in their spectra.
The evolutionary process sees two stars interacting in a binary system, where one star expands into a giant while the gravitational force of the smaller star strips away the atmosphere, comprising hydrogen and helium amongst other elements, of the giant. Scientists believe these stars from at the same time as the globular cluster.
Through using the BPASS models and calculating the age of the binary star systems the researchers demonstrated that the globular cluster of which they are part was not as ancient as other models suggested.
Maps chart space cloud where stars are born
The BPASS models, developed in collaboration with JJ Eldridge of the University of Auckland, had previously proven effective in exploring the properties of young stellar populations in environments including our Milky Way and all the way out to the edge of the Universe.
The findings point to new avenues of enquiry into how massive galaxies, and the stars contained within, form, she says.
“It’s important to note that there is still a lot of work to do—in particular looking at those very nearby systems where we can resolve individual stars rather than just considering the integrated light of a cluster—but this is an interesting and intriguing result.
Listen: Gigantic telescope to hunt for universe’s birth
“If true, it changes our picture of the early stages of galaxy evolution and where the stars that have ended up in today’s massive galaxies, such as the Milky Way, may have formed. We aim to follow up this research in future, exploring both improvements in modeling and the observable predictions which arise from them.”
Source: University of Warwick