Researchers have taken a step closer to the goal of precision medicine for treating glaucoma and other neurodegenerative vision diseases.
For the first time, scientists identified a wide variety of previously unknown cell subtypes in the human eye. The cells—called retinal ganglion cells, also known as RGCs—are the neurons that take visual information from the eye to the brain for processing and interpretation, which is how we see.
“Although RGCs have been extensively studied in the past, they are not all the same,” says Jason Meyer, associate professor of biology at Indiana University-Purdue University Indiana and a primary investigator with the Stark Neurosciences Research Institute at the Indiana University School of Medicine.
“There are more than 30 different subtypes of these cells. Each of these subtypes is thought to have very different functions, and they respond differently in glaucoma and other diseases that affect RGCs. Some of these cell subtypes are more susceptible to damage than others.
“With our new comprehensive understanding of the diversity of RGCs, we have set the stage for future studies to look at these cells through a more critical lens, with the ultimate goal of more-tailored drug development and treatment strategies for cells that are damaged or lost in glaucoma and other neurodegenerative vision disorders,” Meyer says.
As reported in Stem Cell Reports, researchers studied RGCs that they derived from pluripotent stem cells. In past work, the Meyer laboratory successfully demonstrated the ability to turn stem cells derived from human skin cells into RGCs.
“The methods used in this work will allow us to study how neurodegenerative diseases or optic-nerve injuries—like those suffered by soldiers in combat or athletes in contact sports—affect different subtypes of RGCs,” Meyer says. “In the future, we will likely be able to customize cell-replacement strategies to replace those specific RGC subtypes for therapies.”
Prior to the study, knowledge of RGC subtypes in humans had been limited. Through methods developed by Kirstin Langer, the doctoral student who is first author of the new study, the researchers were able to identify and characterize these major RGC subtypes.
New way of imaging eyes could spot glaucoma sooner
“The study of different RGC subtypes in human-derived cells allows for more in-depth studies of how these RGCs develop, along with things like how these RGC subtypes may be differently affected by diseases or injuries of the eye,” says Langer.”We hope this will allow us to develop better-targeted treatments for patients in the future.”
Coauthors are from IUPUI and the University of Wisconsin. The National Eye Institute and the Indiana Department of Health funded the work.
Source: Indiana University