A new type of flow battery that involves a liquid metal more than doubles the maximum voltage of conventional flow batteries and could lead to affordable storage of renewable power.
The technology has long been considered as a likely candidate for storing intermittent renewable energy. However, until now the kinds of liquids that could produce the electrical current have either been limited by the amount of energy they could deliver or have required extremely high temperatures or used very toxic or expensive chemicals.
Assistant professor of materials science and engineering William Chueh, along with PhD student Antonio Baclig and Jason Rugolo, now a technology prospector at Alphabet’s research subsidiary X Development, decided to try sodium and potassium, which when mixed form a liquid metal at room temperature, as the fluid for the electron donor—or negative—side of the battery. Theoretically, this liquid metal has at least 10 times the available energy per gram as other candidates for the negative-side fluid of a flow battery.
“We still have a lot of work to do,” says Baclig, “but this is a new type of flow battery that could affordably enable much higher use of solar and wind power using Earth-abundant materials.”
The group reports their work in Joule.
Max voltage
In order to use the liquid metal negative end of the battery, the group found a suitable ceramic membrane made of potassium and aluminum oxide to keep the negative and positive materials separate while allowing current to flow.
The two advances together more than doubled the maximum voltage of conventional flow batteries, and the prototype remained stable for thousands of hours of operation. This higher voltage means the battery can store more energy for its size, which also brings down the cost of producing the battery.
Water-based battery stores green energy for later
“A new battery technology has so many different performance metrics to meet: cost, efficiency, size, lifetime, safety, etc.,” says Baclig. “We think this sort of technology has the possibility, with more work, to meet them all, which is why we are excited about it.”
Next steps
The team of PhD students found that the ceramic membrane very selectively prevents sodium from migrating to the positive side of the cell—critical if the membrane is going to be successful. However, this type of membrane is most effective at temperatures higher than 200 degrees Celsius (392 F). In pursuit of a room-temperature battery, the group experimented with a thinner membrane. This boosted the device’s power output and showed that refining the membrane’s design is a promising path.
‘MRI’ diagnoses what’s wrong with batteries
They also experimented with four different liquids for the positive side of the battery. The water-based liquids quickly degraded the membrane, but they think a non-water-based option will improve the battery’s performance.
Funding came from Stanford’s TomKat Center for Sustainable Energy, the Anthropocene Institute, the State Grid Corporation of China through Stanford’s Energy 3.0 corporate affiliate program, the National Research Foundation of Korea, the US National Science Foundation, and Stanford Graduate Fellowships.
Source: Stanford University