A new study with rats shows it is possible to reverse high blood pressure in offspring born to hypertensive mothers. Scientists say the results, though preliminary, may offer promise toward addressing “fetal programming,” or the in utero transfer of certain health risks from mothers to children.
In humans, gestational hypertension affects up to 15 percent of pregnancies. That percentage may rise because high blood pressure generally increases as we age—and American women are waiting longer to have children.
Further, multiple studies have documented that offspring born to hypertensive mothers have higher blood pressure in childhood and are at higher risk of being hypertensive and contracting heart disease as adults.
Can exercise lower baby’s blood pressure?
For the study in the journal Hypertension, researchers wanted to understand if gestational hypertension would affect blood pressure in baby rats and, if so, how the rats’ brains might be involved.
They induced hypertension in mother rats during the perinatal period (three weeks before and after birth) and measured the blood pressure response in the offspring at 10 weeks, the rat equivalent of adulthood. Offspring were then given a hormone that elevates blood pressure to determine how they would respond.
“What you see is enhanced, that is, a sensitized hypertensive response in animals where mothers had been hypertensive during pregnancy,” says Alan Kim Johnson, professor of psychological and brain sciences at the University of Iowa.
The researchers then administered a drug called Captopril, which is commonly used to treat high blood pressure in human adults, to the rats born to hypertensive mothers and that had also been given the blood-pressure hormone. The rats that received Captopril from three to nine weeks of age were then tested for hypertension at 10 weeks and showed no signs of enhanced high blood pressure. “That means we can, in effect, deprogram them,” Johnson says.
Does drinking at conception risk baby’s future health?
Whether this would translate to humans is far from clear. But it opens a path for further study of the neural and chemical changes that occur in the brains of offspring born to hypertensive mothers—or mothers with other health issues—and how those conditions ultimately are passed on.
Johnson and colleagues have begun to document that transfer by tracking how the brain and central nervous system react to high blood pressure stressors. One, caused by a hormone called angiotensin II, appears to activate pathways from the brain that trigger a “sympathetic” response from the central nervous system.
In other words, the central nervous system becomes more prone to elevate blood pressure when it senses the hormone. Researchers hypothesize the sympathetic response may become more conditioned, or overly responsive, in humans due to natural causes, such as with the children of mothers who had high blood pressure during their pregnancy.
Johnson compares the process to a memory being made. In this case, the brain is establishing a “memory” of high blood pressure that’s passed on to the offspring. But, importantly, researchers showed in the rat experiments that the memory can be altered, even erased. “We’ve changed the information that was laid down in the brain,” Johnson says.
“This study on rats sheds some light on how maternal health during pregnancy impacts long-term cardiovascular health of the offspring,” says Christine Maric-Bilkan, program officer of the Division of Cardiovascular Sciences of the National Heart, Lung, and Blood Institute. “These findings suggest a potential therapeutic strategy for prevention of elevated blood pressure in adults who were born to mothers that themselves had elevated blood pressure during pregnancy.”
The National Heart, Lung, and Blood Institute, part of the National Institutes of Health, funded the research.
Source: University of Iowa