Researchers have identified a new way to potentially slow the fast-growing cells that characterize all types of cancer by using the gene-editing technology called CRISPR.
The findings were made in kidney and cervical cancer cells in the laboratory and are a long way from being applied in people. But, they could be the basis of a treatment option in the future, the researchers say.
All cells go through the “cell cycle,” a series of events that culminate in orderly cell growth and division. In cancer, the cell cycle is out of whack; cells divide without stopping and invade surrounding tissues.
Researchers identified a protein called Tudor-SN that is important in the “preparatory” phase of the cell cycle—the period when the cell gets ready to divide. When scientists eliminated this protein from cells, using the gene-editing technology CRISPR-Cas9, cells took longer to gear up for division. The loss of Tudor-SN slowed the cell cycle.
“We know that Tudor-SN is more abundant in cancer cells than healthy cells, and our study suggests that targeting this protein could inhibit fast-growing cancer cells,” says Reyad A. Elbarbary, lead study author and research assistant professor in the Center for RNA Biology and the department of biochemistry and biophysics at the University of Rochester School of Medicine and Dentistry.
Using CRISPR against cancer shows success in mice
Elbarbary, who works in the laboratory of senior study author Lynne E. Maquat, adds that there are existing compounds that block Tudor-SN that could be good candidates for a possible therapy.
Maquat’s team discovered that Tudor-SN influences the cell cycle by controlling microRNAs, molecules that fine tune the expression of thousands of human genes.
When Tudor-SN is removed from human cells, the levels of dozens of microRNAs go up. Boosting the presence of microRNAs puts the brakes on genes that encourage cell growth. With these genes in the “off” position, the cell moves more slowly from the preparatory phase to the cell division phase.
“Because cancer cells have a faulty cell cycle, pursuing factors involved in the cell cycle is a promising avenue for cancer treatment,” notes Maquat, director of the Center for RNA Biology and professor of biochemistry and biophysics.
Maquat and Elbarbary have filed a patent application for methods targeting Tudor-SN for the treatment and prevention of cancer. Research next steps include understanding how Tudor-SN works in concert with other molecules and proteins so that scientists can identify the most appropriate drugs to target it.
Should cancer research target this mitosis step?
The study appears in the journal Science. Funding came from the National Institutes of Health.
Source: University of Rochester