A new artificial photosynthesis approach uses sunlight to turn carbon dioxide into methane, which could help make natural-gas-powered devices carbon neutral.
Methane is the main component of natural gas. Photosynthesis is the process through which green plants use sunlight to make food for themselves out of carbon dioxide and water, releasing oxygen as a byproduct. Artificial photosynthesis often aims to produce hydrocarbon fuels, similar to natural gas or gasoline, from the same starting materials.
A new catalyst makes the methane-generating method possible. The solar-powered catalyst is made from abundant materials and works in a configuration that could be mass produced. The researchers think that it could be recycling smokestack carbon dioxide into clean-burning fuel within 5-10 years.
“Thirty percent of the energy in the US comes from natural gas,” says Zetian Mi, professor of electrical engineering and computer science at the University of Michigan, who led the work with Jun Song, professor of materials engineering at McGill University. “If we can generate green methane, it’s a big deal.”
Better artificial photosynthesis
The chief advance is that the team has harnessed relatively large electrical currents with a device that should be possible to mass produce. It’s also especially good at channeling that electricity toward forming methane, with half of the available electrons going toward methane-producing reactions rather than toward byproducts like hydrogen or carbon monoxide.
“Previous artificial photosynthesis devices often operate at a small fraction of the maximum current density of a silicon device, whereas here we operate at 80 or 90% of the theoretical maximum using industry-ready materials and Earth abundant catalysts,” says Baowen Zhou, a postdoctoral researcher in Mi’s group working on the project.
Turning carbon dioxide into methane is a very difficult process. The carbon must be harvested from CO2, which requires a lot of energy because carbon dioxide is one of the most stable molecules. Likewise, H2O must be broken down to attach the hydrogen to the carbon. Each carbon needs four hydrogen atoms to become methane, making for a complicated eight-electron dance (each carbon-hydrogen bond has two electrons in it, and there are four bonds).
The design of the catalyst is critical to the success of the reaction.
“The one million dollar question is how to quickly navigate through the enormous materials space to identify the optimal recipe,” Song says.
His team’s theoretical and computational work identified the key catalyst component: nanoparticles of copper and iron. The copper and iron hold onto molecules by their carbon and oxygen atoms, buying time for hydrogen to make the leap from the water molecule fragments onto the carbon atom.
A solar panel for transforming carbon dioxide
The device is a sort of solar panel studded with nanoparticles of copper and iron. It can use the sun’s energy or an electrical current to break down the carbon dioxide and water.
The base layer is a silicon wafer, not unlike those already in solar panels. That wafer is topped with nanowires, each 300 nanometers (0.0003 millimeters) tall and about 30 nanometers wide, made of the semiconductor gallium nitride.
The arrangement creates a large surface area over which the reactions can occur. A thin film of water covers the nanoparticle-flecked nanowires.
The researchers can design the device to run under solar power alone, or amp up the methane production can be with a supplement of electricity. Alternatively, running on electricity, the device could potentially operate in the dark.
In practice, the artificial photosynthesis panel would need to be connected to a source of concentrated carbon dioxide—for example, carbon dioxide captured from industrial smokestacks. The device may also be configured to produce synthetic natural gas (syngas) or formic acid, a common preservative in animal feed.
Additional researchers from the University of Michigan, McGill University, and McMaster University contributed to the work.
The findings appear in the Proceedings of the National Academy of Sciences.
Funding for the research came from Emissions Reduction Alberta and the Natural Sciences, the Engineering Research Council of Canada, and the Blue Sky Program at the University of Michigan College of Engineering. The university holds multiple patents on the catalyst.
Source: University of Michigan